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An integral equation, to which one can reducc the problem of the indentation of a wedge-shaped punch into an elastic half- 
space when there is no friction, is considered. Using a multidimensional analogue of the Wiencr-Hopf factorization method, an 
explicit formula for solving an equation close to that under consideration (a perturbed equation) is obtained. 

A method of solving the corresponding integral equation for a wedge-shaped punch was proposed in 
[1] (see also [2, 3]). It was based on expansion of the kernel and the use of the Mellin transform. Another 
method is employed below to consider the same integral equation. 

1. FORMULATION OF THE PROBLEM 

In the case of static contact between a wedge-shaped punch and an elastic half-space without friction 
[1, p. 118] the problem can be reduced to solving the following integral equation 

SJk(x  - ~ , y  - n ) q ( ~ , r l ) d ~  = C I f ( x , y  ), ( x , y )  ~ £2 (1.1) 
fl 

wheref(x,y) is a given function in the two-dimensional domain f2 = {(x,y) ~ R2:y > a Ixl, a > 0}, q(~, 
~!) is an unknown function, C1 is determined by the constants of elasticity of the half-space, and the 
kernel of the integral equation (1.1) is defined by the inverse Fourier transform 

Here, as compared to the equation in [1], some slight changes in the definition of [2 are made for 
convenience. For the domain under consideration the wedge-shaped punch must be convex, which was 
not required in [1]. However, it will be shown below that the problem can be solved by a similar method 
in the case of a non-convex wedge. 

In general, Eq. (1.1) belongs to the class of pseudodifferential equations [4]. It can of course be 
considered from the viewpoint of integral equations, but to do so one must pay special attention to the 
meaning of the integral in the equation. 

2. F U N C T I O N A L  S P A C E S  A N D  P S E U D O D I F F E R E N T I A L  O P E R A T O R S  

Equation (1.1) will be considered within the framework of the theory of pseudodifferential equations 
in the Sobolev-Slobodetskii spaces H'. Let us briefly recall the basic definitions. 

The Sobolev--Slobodetskii space HS(R 2) - H s, s ~ R consists of distributions u(x, y) whose Fourier 
transform F is a locally Lebesgue integrable function ~(~, rl) such that 

Ilult 2 = I f  la(g, rl) 12 (l+l~l+lrll)2Sd~drl < +*~ 

We recall that if S(R 2) is the Schwartz class of infinitely differentiable functions decreasing along 
with all their derivatives more rapidly than any negative power of Ix l + ly I as Ix l + [y I ~ +~,  then 

2 the Fourier transform ofu(x ,y)  ~ S(R ) is defined by 
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T~(~, n) ~ ( Fu )(~, vl) =" !~ ei(~ + Yq)u( x" y )dxdy 

Finally, we note that ifb ¢ S'(R 2) is a distribution, then a pseudodifferential operatorA can be defined 
by 

Au = F -I (b~), u ~ S(R 2) (2.1) 

The function b(~, ~1) is called the symbol of A. 
We introduce the following operator generated by the kernel k(x, y) in (1.1) 

( Ku X x, y) ffi ~J2 k( x - x', y - y')u( x', y')dx'dy' (2.2) 
IK 

According to (2.1), K can be regarded as a pseudodifferential operator with symbol (~2 + 112)-1/2 and 
(2.2) as the integral representation of K. 

3. P E R T U R B A T I O N  A N D  F A C T O R I Z A T I O N  

Consider the operator /~ corresponding to the symbol 

0(~,11,£).~(~2+112+~2) -~, CeR, e#0 

We will write Eq. (1.1) in operator form 

~u(x,y), 
P+Kq = f ,  (P+u)(x,y) = [0, 

(x,y) ¢ f~ 
(x ,y)  ~ ~ (3.1) 

where P+ is the restriction operator to ~, and replace it by the perturbed equation 

P+K@+ = f  (3.2) 

(the constant C1 is omitted in (3.1) and (3.2); the subscript plus is attached to p to indicate that p is 
defined in ~). The change of equation is justified by the fact that K is an unbounded operator in/-P. 
while the operators/~ have the required property, namely, they are bounded operators from/./s to/-P+ f 
[4, Lemma 4.4, p. 45]. 

Equation (3.2) will be solved exactly for all e # 0. Ifp(~ ) is a solution of Eq. (3.2) and limp(~ ) = q as 
e ---> 0 exists in the HS-norm, one can verify that q satisfies Eq. (3.1). Because of this p(~ ) will be called 
an approximate solution of Eq. (3.1) (even though, in general, the exact solution does not exist a priori 
for an arbitr~y right-hand sidefe HS+l(~); here and henceforth/P(f~) will denote the space of functions 
u e H s such that supp u C f~). 

We will represent a(~, 11, e) in the form 

a(~,, n,  ¢) = o+(1~, 11, 0 o - ( ~ ,  n,  ~) 

o ± ( ~ , n , O  = (~'~a ~ + In ± ~ ( ~ , n , e ) ) - ~ ,  ~(~,,n,e) = ~/a2n 2 - ~2 _ ~2 
(3.3) 

The representation (3.3) will be called the wave factorization of o(~, B, e). The factors o + and o- have 
a number of remarkable properties. Let O + be a cone in R 2 of the form {(~, ~): an > [ ~ [} and let 
O- be the opposite cone ((~, B): (--~, ~) ~ O+}. Let T(O ±) be the radial tubular domain over O ± [5], 

2 2 + that is, the set R + iO-  in C .  It turns out that o-(~, ~, e) is the boundary value of a function analytic 
in T(O ±) and having no zeros in T(O±). Indeed, let us consider the function 

F(zl, z2) = ( ~ a  2 + lz2 + ~,(z, ,z2, e)) - ~  (3.4) 

of two complex variables zl and z2. We set T(O) = T(O +) U T(O-). We know that the function a2~ - 
z~ has no non-negative values for z = (Zl, z2) ~ T(O) (in [5], the lemma on p. 350, this is proved for a 
light cone with a = 1; the assertions of the lemma can easily be extended to the case of an arbitrary a 
> 0. The same must obviously be true for a2~ - ~ - e 2. It follows that each of these two branches of 
~(zl, z2, E) is single-valued and analytic in T(O). Moreover 
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I ~ (z  I, z2, ~)1 ~< d(1 + I Z I) ¢t (3.5) 

where d is a positive constant depending only on a and where e, vt ,~ 1. This implies that ~(gl, 7,2, g) has 
boundary values for (~', 1]') ---> 0, (~', rl') e O+, ((~', r() ~ 0, (~', 1] ) e O-) in the sense of distributions 
[5, p. 275], z e C" being represented by (~, i~, rl +/11 ). 

The boundary values are independent of the way (~', 1]') tends to zero. It is therefore convenient to 
consider limits of the form lim~, ~ 0~(~, rl + i1]', e). 

Choosing one of the branches of ~(z~, z2, e), for example, that which maps T(O) onto the upper half- 
plane, it can be shown that 

[ ± . ~ .  ~>0,  r l>0  
~(~,rI±iO,~)=~:I:~FK, ~:>0, 1]<0 

[i'~FL--~, it<O, ( I c=a2112 -~ -e2 )  

will be the boundary values of this branch. Note that 

~(~, 11 ± iO, ~) = -~(~, 1] - iO, e) 

(the bar denotes complex conjugation). 
Let us return to the function (3.4). It is analytic in T(O+), since we have Im z2 > 0 and Im ~(zl, z2, 

e) > 0 for z e T(O+), i.e. all the values of ~/(a 2 + 1)z2 + ~(zl, z2, e) lie in the upper half-plane. In 
the same way we can verify that (~/(a 2 + 1)z2 + ~(Zl, z2, e)) -lrz is analytic in T(O-). It follows that if ~(~, 
1] + i0, e) is taken as ~(~, 1], e), then the factors o + and o- in (3.3) have the properties which will be 
needed in what follows, namely, (o+) -+1 and (o-) -+1 admit of analytic continuation into T(O +) and T(O- 
), respectively, and the analytic continuations satisfy (3.5) for some ct t> 0 and have no zeros in T(O÷), 
T(O-) (one can take ct = 1/2 for (o÷) -1, (o-) -1 and vt = 0 for o + and o-). 

4. INVESTIGATION OF EQUATION (3.2) 

We shall seek a solution of Eq. (3.2) in the space H~(~) of distributions u. The right-hand side f in 
(3.2) will be considered in the space H~ +1 (fl) of functions from S'(fl) admitting of an extension 
to/-P+I(R2) with 

Ilfl lsf+,cn ) = inf l l / / l l . , , ,{~2) 

by definition, the infimum being taken over all possible continuations l. 
Letfl be an arbitrary continuation o f f  from f~ to R2,fl e/-P+I(R2). We setp_ = fl  - K~+ and rewrite 

Eq. (3.2) in the form 

K ~ +  + p_ = f l  (4.1) 

On applying a Fourier transformation to Eq. (4.1), we can write 

11, 1]) + ( { ,  1]) = ( { ,  11) (4.2) 

Taking the wave faetorization (3.3) into account, the last equation can be represented as 

(4.3) 

o )3 
(Here the dependence of ~+ and ~_ on e is omitted for simplicity.) 

Equation (4.3) is the multidimensional analogue of the so-called jump problem [6]. The one- 
dimensional version of it arises naturally in the well-known Wiener-Hopf method [1, 7, 8]. 

Let us analyse Eq. (4.3) in detail. We denote by H~ the Fourier image of HS(~), by ~ s  the Fourier 
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image of Hs(R 2 \ H),  and by ~s the Fourier image of H s. Our immediate goal is to verify that ~+ 
~+1:~ and ~_ ~ ~_+~/2. We note right now that ~+, ~_, f2 ~ ~s+~:~, since p+ ~ H s and the pseudo- 
differential operator with symbol c~ + has order -¥2 [4, Lemma 4.4, p. 45],f~,p_ ~ H s+l, and the pseudo- 
differential operator with symbol (~-)-1 has order 1/2. 

Furthermore, H~+~  can be described explicitly [9, Section 10]: it consists of the boundary values 
(in the sense of distributions) of analytic functions ~(~, rl) in T(O +) with finite norm 

sup( ,_ l~(~ + i~', rl + irl')l 2 Z 2, +~ d~ I_}~, (~', n') ~ 0 + 

ffi I+I~I+I~I 

which is identical with 

Sinceff+ and o + are the boundary values of analytic functions on T(O +) and 

!~ Io+(~'n'~)12 i/~+(~'~l)i2 ~'2s+ld~ ~ d~ t '/3+(~'rI)12 ~2'd~trl < +** 

(because ~+ ~ H~.), it follows that ~+ ~ ~.+i/2. 
I We consider ~_. Since (a-)- (~, ~, ~) admits of an analytic continuation into T(O-) and satisfies (3.5) 

with ct = ¥2, the inverse Fourier transform (o-)-l(~, 13, E) in the sense of distributions is a distribution 
A concentrated on ~'ii = {(x, y) ~ R2: y ~< --alxl} and (o-)-I/T_ is the convolution of A and p_. 
Approximating p_ by infinitely differentiable functions compactly supported on Ra~-~ and taking into 
account that supp A C ~i and supp p_ C R~£~, one can verify that supp A */9_ C R2W~ (the asterisk 
denotes convolution). The latter is equivalent to the fact that (o-)-I/T_ ~ ~s+ir2. 

Equation (4.3) will be solved using an integral operator, which will now be introduced and whose 
basic properties will be described. 

5. THE INTEGRAL OPERATOR 

We define the integral operator 

(G2u)(~,'q) = lim u(x, y)dxdy 
~--~0+ a~ (~-X) 2 -a2(~-y+i 'c)  2 

on functions from the Schwartz class S(R2). If O(x,y) is the characteristic function of [2, it can be shown 
that 

F(Ou) = 2aG2~, Vu e $(R 2) (5.1) 

Indeed, consider the integral (x > 0) 

J2 d<~+~)O(x, y)u(x, y)e-~dxdy 

This is the Fourier transform of the product of two functions u(x,y) and 0(x,y)e -~ which are absolutely 
integrable (the latter enables us to apply the theorem on convolution). 

We find the Fourier transform of 0(x, y)e ~ 
~[ ei(X~+Yq)O(x,y)e-Vdxdy = ~ eiX~eiY(n+i~)dxdy = 

• r f I - 

+" • • . 1 2a 
= ] etYOl+n)dY e~dx= J elalxt(~+a)ei~d'x= ~2 _a2(.q+/~)2 

- ~,atxi / i.(11 + i x )  _.. 
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Convoluting the latter function with ~(~, rl) and taking the limit as x ~ 0 (x > 0) we obtain (5.1). 
The operator G2 can be written in a more customary form if the substitutions 

~ ' = ~ - a l  1, Tl '=~+at  l, x'=x-ay, y'=x+ay 

are made for the variables. Then 

(G2u)(~l'2~'" rl"2a{') l lim ~[2 ul(x',y',dx'dy' 
= 2-"a , ~ o ,  ( ~ '  - x '  - n ) ( n '  - Y '  + ix) 

y -x  
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(5.2) 

The fight-hand side of this equality is the product of two one-dimensional Cauchy integrals, and the 
limit is easy to compute. We introduce the operators 

I ~I~ uW,y')a~' 
(s~u)Cx,,y') = v . p . ~ / _  x ' - ~ '  

ml +~. u(x',n')dr 
( s ~ , , X x ' , y ' ) = v . p . =  , s ,~=s,s~ 

We have [6, p. 83] 

~2 
-- - "~a (-"~ ({ '  rl'l + ( s~ul )(~', rl') - ( S2u, )(~', 1]') + ( S,2ul )(~', 1'1')) 

(5.3) 

The representation (5.3) is convenient because it easily enables us to reduce the problem concerned 
with the boundedness of G2 in the H ~ norm for Is I < 1/2 to the corresponding one-dimensional results 
[4, p. 59], since 1 + Ix'l + l Y ' I -  1 + Ixl + lyl, 1 + I~'1 + I n ' l -  1 + I~1 + Inl with the sub- 
stitution (5.2), i.e. the ratio of the numbers in question has upper and lower bounds of positive 
constants. 

Indeed, the boundedness of G2 in the norm of H~ is equivalent to the boundedness of 

u(x, yXl + , ~  + ,~)" ~ray 
(~u)(~'rl)= z~o+lira ~[2 (l+l~l+ltll)S((~-x)2 - a 2 ( t l -  y+/,r) 2) 

in the space L2(R 2) of functions with finite norm 

Since, according to (5.3), G 2 is a linear combination of S 1 and $2 and their products (apart from a change 
of variables leading to an equivalent H s norm), it remains to use the appropriate result from [4] (Theorem 
5.1). 

Finally, the last important property is that Gz is an orthogonal projection from ~s onto H~. (it should 
be mentioned once more that Is I < 1/2). If 0 is the operator of multiplication by 0(x, y), thenone can 
verify that it is bounded in the H s norm. This follows from (5.1), the boundedness of G2 in the/-P norm 
and the fact that S(R 2) is dense in H ~. For u(x, y) ~ S(R z) we have supp O(x, y)u(x, y) C ~ .  It follows 
that 0u ~/-/*(fl). That/-P(f~) is closed in H s can be verified by a method analogous to that in [4]. Thus 
G2 is a bounded operator from H s to H~.. In preciselythe same way one can verify that I - G2, where 
I is the identity operator, is a bounded operator from H ~ to ~s_. 

This property implies the same fact which will be used as the basis for solving Eq. (4.3). Namely, for 
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[s[ < 1/2 every function ~(~, 11) ¢ ~s can be uniquely represented in the form 

~(~.n)=~(~,n)+r~(~,n), ~ E~, ~2 E~ 

with ul = G ~  and u2 = (I - G2)~. 
The equality 

u = Ou + (1 - 0)u (5.4) 

is obvious. Changing to Fourier transforms taking (5.1) into account and extending (5.4) by continuity 
from S(R 2) to/-r, we can write 

= ~ + ( t -  62)~ (5.5) 

and set Gz~ ffi ul and ( I -  G2)~ - Uz. 
It remains to verify that (5.5) is a unique representation. To do this it suffices to show that if 

ul + fi2 = 0 (5.6) 

then ul - 0 and u2 -= 0. 
yk ing~1  ¢ C~(fl) andS2 ~ C~*(R2X~) (by the methods of [4, p. 44] it can be shown that the classes 

Co (f~) and Co (R2x[]) of compactly supported infinitely differentiable functions whose support is 
contained in the given domain are dense, respectively, in H~, H_S), we have 

0gl = gl, 0 9 2 = 0  

Approximately ul by functions of type gl and u2 by functions of type g2 and using the properties of G2, 
we obtain 

G2/~I ---- Ul, G2/]2 =" 0 (5.7) 

By analogy 

( I -  G2)~1 = 0, ( I - G z ) ~ 2  = fi2 

Applying (5.7) and (5.8) to (5.6), we obtain the required result. 

(5.8) 

6. SOLUTION OF EQUATION (3.2) 

According to Section 5, the solution of Eq. (4.5) for Is + ~/21 < 1/2, i.e. -1 < s < 0, has the 
form 

~+(~,,n) ffi (c~72 )¢,, n) 

It follows that the Fourier transform of the solution of Eq. (3.2) has the explicit form 

~ (x,y)dxdy (6.1) 
/3+(F~'11)=(O'+)-'(~'~'~'),~+ ~t o-(x,y,e)((~- x)2 -a2(rl- y+ix) 2) 

where fl is an arbitrary continuation off  from fi to R 2 with fl ~/aC+l,p+ being independent of the choice 
of this continuation. 

We write (6.1) in the symbolic form 

Letf~ be another continuation o f f  

~÷ = (~÷) -Jc2 (a - ) - l ~  (6.2) 

~+ _ (0+)-I G2 (O-)-I ~, (6.3) 
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Subtracting (6.2) from (6.3), we get 

~+ -- ~+ ____ (~+)-I G2 (l~-)-I (fl - Z ) 

But supp (f~ - f l )  C R 2 ~  and then (a-)-l(f~ - f 0  ~ ~ s  (see Section 4), which implies (Section 5) that 
G2(G-)-10~ - f l )  = 0. This means thatff~ = if+. 

By the boundedness of G1 in ~s  for Is I < 1/2 and the boundedness of the pseudodifferential operator 
of order 1/2 with symbols (¢~+)-1 and (a-) -1 acting from H s to H ~-1r2, the a priori estimate 

Up+l,,.,.) alt:ll..+, d a/l,#+,(.) 

of the solution follows from (6.2). The rightmost inequality holds because (6.2) is independent of the 
choice of the continuation If, and so If can be chosen in such a way that the desired inequality is satisfied. 

We remark that if t~ is a non-convex cone (the angle at the vertex being greater than ~), the method 
presented is obviously applicable without any major modifications: G2 should be introduced as it applies 
to the cone R~, I - G2 should be used in Section 6, and the wave factorization of o should be 
constructed for the cones related to R'~. 

The case a = 0 when ~ "degenerates" into the half-plane, it would seem, is not covered by the 
proposed scheme. It is, in fact, much simpler and can be considered using the standard Wiener-Hopf 
method, in which factorization is performed relative to one variable, the other one playing the role of 
a parameter (see [4]). The function o({, 11, e) should be represented in the form 

f f (~ , , ,~ )  = (V I + i ~  + e  ~ ) - ~  (1] - i 3 ~  -~ + ~2 ) - ~  

so that the factors admit of  analytic cont inuat ion  into the upper and lower half-planes with respect  to 
I] with ~ fixed, satisfy the required estimates,  and have no zeros. 

Remarks. 1. It is easy to take the limit as e ---> 0 in (6.1), namely, one should set ~ -- 0 in (6.1). The point is that 
all the operators on the right-hand side of (6.1) are bounded in the corresponding spaces/-P for ~ = 0, and so (6.1) 
makes sense for ~ = 0. The perturbation of the original equation is necessary in order that the operators encountered 
at each intermediate stage should be bounded. 

2. The problem concerned with the asymptotic behaviour (near the sides) of the solution calls for a special study. 
Nevertheless, the root singularity encountered in contact problems is indeed present in the case when a = 0 (see 
[4,p. 93, Theorem 9.1 et seq.]; in this case one should take the index ~: appearing there to be 1/2, i.e. the degree of 
a+). 
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